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Crash Course in Basic Probability
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Discrete Random Variable

• A is a discrete random variable if:

‣ A describes an event with a finite number of 
possible outcomes (discrete vs continuous)

‣ A describes and event whose outcomes have some 
degree of uncertainty (random vs. pre-determined)
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• A = the outcome of a coin-flip

‣ outcomes: heads, tails

• A = it will rain tomorrow

‣ outcomes: rain, no rain

• A = you have the flu

‣ outcomes: flu, no flu

• A = your final grade in this class 

‣ outcomes: F, L, P, H

Discrete Random Variables
Examples
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• A = the color of a ball pulled out from this bag

‣ outcomes: RED, BLUE, ORANGE

Discrete Random Variables
Examples
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Probabilities

• Let P(A=X) denote the probability that the outcome of 
event A equals X

• For simplicity, we often express P(A=X) as P(X)

• Ex: P(RAIN), P(NO RAIN), P(FLU), P(NO FLU), ...
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Probability Distribution

• A probability distribution gives 
the probability of each possible 
outcome of a random variable

• P(RED) = probability of pulling 
out a red ball

• P(BLUE) = probability of pulling 
out a blue ball

• P(ORANGE) = probability of 
pulling out an orange ball
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• For it to be a probability distribution, two conditions 
must be satisfied:

‣ the probability assigned to each possible outcome 
must be between 0 and 1 (inclusive)

‣ the sum of probabilities assigned to all outcomes 
must equal 1

0 ≤ P(RED) ≤ 1

0 ≤ P(BLUE) ≤ 1

0 ≤ P(ORANGE) ≤ 1
P(RED) + P(BLUE) + P(ORANGE) = 1

Probability Distribution
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• Let’s estimate these probabilities 
based on what we know about the 
contents of the bag

• P(RED) = ?

• P(BLUE) = ?

• P(ORANGE) = ?

Probability Distribution
Estimation
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• Let’s estimate these probabilities 
based on what we know about the 
contents of the bag

• P(RED) = 10/20 = 0.5

• P(BLUE) = 5/20 = 0.25

• P(ORANGE) = 5/20 = 0.25

• P(RED) + P(BLUE) + P(ORANGE) = 1.0

Probability Distribution
estimation



• Given a probability distribution, 
we can assign probabilities to 
different outcomes

• I reach into the bag and pull out 
an orange ball. What is the 
probability of that happening?

• I reach into the bag and pull out 
two balls: one red, one blue. 
What is the probability of that 
happening?

• What about three orange balls?

P(RED) = 0.5
P(BLUE) = 0.25
P(ORANGE) = 0.25
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Probability Distribution
assigning probabilities to outcomes



What can we do with a probability 
distribution?

• If we assume that each 
outcome is independent of 
previous outcomes, then the 
probability of a sequence of 
outcomes is calculated by 
multiplying the individual 
probabilities

• Note: we’re assuming that 
when you take out a ball, you 
put it back in the bag before 
taking another

P(RED) = 0.5
P(BLUE) = 0.25
P(ORANGE) = 0.25

13
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What can we do with a probability 
distribution?

P(RED) = 0.5
P(BLUE) = 0.25
P(ORANGE) = 0.25

• P(      ) = ??

• P(      ) = ??

• P(                ) = ??

• P(                ) = ??

• P(                ) = ??

• P(                     ) = ??
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What can we do with a probability 
distribution?

P(RED) = 0.5
P(BLUE) = 0.25
P(ORANGE) = 0.25

• P(      ) = 0.25

• P(      ) = 0.5

• P(                ) = 0.25 x 0.25 x 0.25

• P(                ) = 0.25 x 0.25 x 0.25

• P(                ) = 0.25 x 0.50 x 0.25

• P(                     ) = 0.25 x 0.50 x 
0.25 x 0.50
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• P(A,B): the probability that event A and event B both 
occur

• P(A|B): the probability of event A occurring given prior 
knowledge that event B occurred

Conditional Probability
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P(RED) = 0.50
P(BLUE) = 0.25

P(ORANGE) = 0.25

P(RED) = 0.50
P(BLUE) = 0.00

P(ORANGE) = 0.50

A B
• P(      | A) = ??

• P(      | A) = ??

• P(                 | A) = ??

• P(      | B) = ??

• P(           | B) = ??

• P(                 | B) = ??

Conditional Probability
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Conditional Probability

P(RED) = 0.50
P(BLUE) = 0.25

P(ORANGE) = 0.25

P(RED) = 0.50
P(BLUE) = 0.00

P(ORANGE) = 0.50

A B
• P(      | A) = 0.25

• P(      | A) = 0.50

• P(                 | A) = 0.016

• P(      | B) = 0.00

• P(           | B) = 0.25

• P(                 | B) = 0.00
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• P(A, B) = P(A|B) x P(B)

• Example:

‣ probability that it will rain today (B) and tomorrow (A)

‣ probability that it will rain today (B)

‣ probability that it will rain tomorrow (A) given that it 
will rain today (B)

Chain Rule
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• P(A, B) = P(A|B) x P(B) = P(A) x P(B)

• Example:

‣ probability that it will rain today (B) and tomorrow (A)

‣ probability that it will rain today (B)

‣ probability that it will rain tomorrow (A) given that it 
will rain today (B)

‣ probability that it will rain tomorrow (A)

Independence
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A B

Independence

P(    | A) ?= P(    )



22

A B

Independence

P(    | A) > P(    )
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A B

Independence

P(    | A) ?= P(    )
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A B

Independence

P(    | A) = P(    )
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Bayes’ Law
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Bayes’ Law
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Bayes’ Law

How do we get this? 
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Derivation of Bayes’ Law

Always true!

Chain Rule!

Divide both 
sides by P(B)!
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Naive Bayes Classification
example: positive/negative movie reviews

Bayes Rule

Confidence of 
POS prediction 
given instance D

Confidence of 
NEG prediction 
given instance D
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

Are these 
necessary?

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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• Our next goal is to estimate these parameters from the 
training data!

• P(NEG) = ??

• P(POS) =  ??

• P(D|NEG) = ??

• P(D|POS) = ?? 

Naive Bayes Classification
example: positive/negative movie reviews

Easy!

Not so easy!
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• Our next goal is to estimate these parameters from the 
training data!

• P(NEG) = % of training set documents that are NEG

• P(POS) =  % of training set documents that are POS

• P(D|NEG) = ??

• P(D|POS) = ?? 

Naive Bayes Classification
example: positive/negative movie reviews
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Remember Conditional Probability?

P(RED) = 0.50
P(BLUE) = 0.25

P(ORANGE) = 0.25

P(RED) = 0.50
P(BLUE) = 0.00

P(ORANGE) = 0.50

A B
• P(      | A) = 0.25

• P(      | A) = 0.50

• P(      | A) = 0.25

• P(      | B) = 0.00

• P(      | B) = 0.50

• P(      | B) = 0.50
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Naive Bayes Classification
example: positive/negative movie reviews

Training 
Instances

Positive Training
Instances

Negative Training
Instances

P(D|POS) = ?? P(D|NEG) = ??
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 ... w_n sentiment

1 0 1 0 1 0 0 1 ... 0 positive

0 1 0 1 1 0 1 1 ... 0 positive

0 1 0 1 1 0 1 0 ... 0 positive

0 0 1 0 1 1 0 1 ... 1 positive
....

....
....

....
....

....
....

....
...

....
....

1 1 0 1 1 0 0 1 ... 1 positive

Naive Bayes Classification
example: positive/negative movie reviews
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• Our next goal is to estimate these parameters from the 
training data!

• P(NEG) = ??

• P(POS) =  ??

• P(D|NEG) = ??

• P(D|POS) = ?? 

Naive Bayes Classification
example: positive/negative movie reviews

Easy!

Not so easy!
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Naive Bayes Classification
example: positive/negative movie reviews

• We have a problem!  What is it?

Training 
Instances

Positive Training
Instances

Negative Training
Instances

P(D|POS) = ?? P(D|NEG) = ??
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Naive Bayes Classification
example: positive/negative movie reviews

• We have a problem!  What is it?

Training 
Instances

Positive Training
Instances

Negative Training
Instances

P(D|POS) = ?? P(D|NEG) = ??
What is D? 



What is the Document 
representation?

• Lets say that our feature space is limited by the 
following words: w_1, w_2, and w_3. 

• Total possible features are: 

• w_1, w_2, w_3 

• w_1 w_2, w_1 w_3, w_2 w_3 

• w_1 w_2 w_3, w_1 w_2 w_4

• Total = 8

• If say our feature space was: w_1, w_2, w_3, and w_4. 
Then total feature possible combinations are: ?   



Feature combinations

• Lets say that our feature space is limited by the 
following words: w_1, w_2, and w_3. 

• Total possible features are: 

• w_1, w_2, w_3 

• w_1 w_2, w_1 w_3, w_2 w_3 

• w_1 w_2 w_3

• Total = 8 => 7 (above combinations) + 1 (no 
combination)

• If say our feature space was: w_1, w_2, w_3, and w_4. 
Then total feature possible combinations are: 24
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• We have a problem!  What is it?

• Assuming n binary features, the number of possible 
combinations is 2n

• 21000 = 1.071509e+301

• And in order to estimate the probability of each 
combination, we would require multiple occurrences of 
each combination in the training data!

• We could never have enough training data to reliably 
estimate P(D|NEG) or P(D|POS)!

Naive Bayes Classification
example: positive/negative movie reviews
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• Assumption: given a particular class value (i.e, POS or 
NEG), the value of a particular feature is independent of 
the value of other features

• In other words, the value of a particular feature is only 
dependent on the class value

Naive Bayes Classification
example: positive/negative movie reviews
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 ... w_n sentiment

1 0 1 0 1 0 0 1 ... 0 positive

0 1 0 1 1 0 1 1 ... 0 positive

0 1 0 1 1 0 1 0 ... 0 positive

0 0 1 0 1 1 0 1 ... 1 positive
....

....
....

....
....

....
....

....
...

....
....

1 1 0 1 1 0 0 1 ... 1 positive

Naive Bayes Classification
example: positive/negative movie reviews
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• Assume the feature space to be the following words: 
hello, world, bad, movie. 

• Review 1: “this is a bad movie!”

• Review 2: “hello world is a movie?”

• What is the bag-of-words document representation for 
review 1 and review 2? 

• Review 1?

• Review 2?

Example of document representation
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• Assume the feature space to be the following words: 
hello, world, bad, movie. 

• Review 1: “this is a bad movie!”

• Review 2: “hello world is a movie?”

• What is the bag-of-words document representation for 
review 1 and review 2? 

• Review 1: 0011

• Review 2: 1101

Example of document representation
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• Assumption: given a particular class value (i.e, POS or 
NEG), the value of a particular feature is independent of 
the value of other features

• Example: we have seven features and D = 1011011

• P(1011011|POS) = 

P(w1=1|POS) x P(w2=0|POS) x P(w3=1|POS) x 
P(w4=1|POS) x P(w5=0|POS) x P(w6=1|POS) x P(w7=1|POS)

• P(1011011|NEG) = 

P(w1=1|NEG) x P(w2=0|NEG) x P(w3=1|NEG) x 
P(w4=1|NEG) x P(w5=0|NEG) x P(w6=1|NEG) x 
P(w7=1|NEG)

Naive Bayes Classification
example: positive/negative movie reviews
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• Assumption: given a particular class value (i.e, POS or 
NEG), the value of a particular feature is independent of 
the value of other features

• Example: we have seven features and D = 1011011

• P(1011011|POS) = 

P(w1=1|POS) x P(w2=0|POS) x P(w3=1|POS) x 
P(w4=1|POS) x P(w5=0|POS) x P(w6=1|POS) x P(w7=1|POS)

• P(1011011|NEG) = 

P(w1=1|NEG) x P(w2=0|NEG) x P(w3=1|NEG) x 
P(w4=1|NEG) x P(w5=0|NEG) x P(w6=1|NEG) x 
P(w7=1|NEG)

Naive Bayes Classification
example: positive/negative movie reviews

You should compute 
both! 
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• Question: How do we estimate P(w1=1|POS) ?

Naive Bayes Classification
example: positive/negative movie reviews
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w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 ... w_n sentiment

1 0 1 0 1 0 0 1 ... 0 positive

0 1 0 1 1 0 1 1 ... 0 negative

0 1 0 1 1 0 1 0 ... 0 negative

0 0 1 0 1 1 0 1 ... 1 positive
....

....
....

....
....

....
....

....
...

....
....

1 1 0 1 1 0 0 1 ... 1 negative

Naive Bayes Classification
example: positive/negative movie reviews
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• Question: How do we estimate P(w1=1|POS) ?

Naive Bayes Classification
example: positive/negative movie reviews

77

P(w1=1|POS) = ??

a b

c d

w1 = 1

w1 = 0

POS NEG
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• Question: How do we estimate P(w1=1|POS) ?

Naive Bayes Classification
example: positive/negative movie reviews

77

P(w1=1|POS) = a / (a + c)

a b

c d

w1 = 1

w1 = 0

POS NEG
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• Question: How do we estimate P(w1=1/0|POS/NEG) ?

Naive Bayes Classification
example: positive/negative movie reviews

77

P(w1=1|POS) = a / (a + c)

P(w1=0|POS) = ??

P(w1=1|NEG) = ??

P(w1=0|NEG) = ??

a b

c d

w1 = 1

w1 = 0

POS NEG
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• Question: How do we estimate P(w1=1/0|POS/NEG) ?

Naive Bayes Classification
example: positive/negative movie reviews

77

P(w1=1|POS) = a / (a + c)

P(w1=0|POS) = c / (a + c)

P(w1=1|NEG) = b / (b + d)

P(w1=0|NEG) = d / (b + d)

a b

c d

w1 = 1

w1 = 0

POS NEG
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• Question: How do we estimate P(w2=1/0|POS/NEG) ?

Naive Bayes Classification
example: positive/negative movie reviews

77

P(w2=1|POS) = a / (a + c)

P(w2=0|POS) = c / (a + c)

P(w2=1|NEG) = b / (b + d)

P(w2=0|NEG) = d / (b + d)

a b

c d

w2 = 1

w2 = 0

POS NEG

• The value of a, b, c, and d would be different for 
different features w1, w2, w3, w4, w5, .... , wn
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D = 1011011, predict positive (POS) if:
P(w1=1|POS) x P(w2=0|POS) x P(w3=1|POS) x P(w4=1|POS) x 
P(w5=0|POS) x P(w6=1|POS) x P(w7=1|POS) x P(POS)

P(w1=1|NEG) x P(w2=0|NEG) x P(w3=1|NEG) x P(w4=1|NEG) 
x P(w5=0|NEG) x P(w6=1|NEG) x P(w7=1|NEG) x P(NEG)

• Otherwise, predict negative (NEG)
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Naive Bayes Classification
example: positive/negative movie reviews

• We still have a problem!  What is it?



63

Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D = 1011011, predict positive (POS) if:
P(w1=1|POS) x P(w2=0|POS) x P(w3=1|POS) x P(w4=1|POS) x 
P(w5=0|POS) x P(w6=1|POS) x P(w7=1|POS) x P(POS)

P(w1=1|NEG) x P(w2=0|NEG) x P(w3=1|NEG) x P(w4=1|NEG) 
x P(w5=0|NEG) x P(w6=1|NEG) x P(w7=1|NEG) x P(NEG)

• Otherwise, predict negative (NEG) What if this never 
happens in the 
training data?
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• When estimating probabilities, we tend to ...

‣ Over-estimate the probability of observed outcomes

‣ Under-estimate the probability of unobserved 
outcomes

• The goal of smoothing is to ...

‣ Decrease the probability of observed outcomes 

‣ Increase the probability of unobserved outcomes

• It’s usually a good idea

• You probably already know this concept!

Smoothing Probability Estimates
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Smoothing Probability Estimates

• YOU: Are there mountain lions 
around here?

• YOUR FRIEND: Nope.

• YOU: How can you be so sure?

• YOUR FRIEND: Because I’ve 
been hiking here five times 
before and have never seen one.

• YOU: ????
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Smoothing Probability Estimates

• YOU: Are there mountain lions 
around here?

• YOUR FRIEND: Nope.

• YOU: How can you be so sure?

• YOUR FRIEND: Because I’ve 
been hiking here five times 
before and have never seen one.

• MOUNTAIN LION: You should 
have learned about smoothing 
by taking INLS 613. Yum!
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Add-One Smoothing

• Question: How do we estimate P(w2=1/0|POS/NEG) ?

P(w2=1|POS) = a / (a + c)

P(w2=0|POS) = c / (a + c)

P(w2=1|NEG) = b / (b + d)

P(w2=0|NEG) = d / (b + d)

a b

c d

w2 = 1

w2 = 0

POS NEG
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Add-One Smoothing

• Question: How do we estimate P(w2=1/0|POS/NEG) ?

P(w2=1|POS) = ??

P(w2=0|POS) = ??

P(w2=1|NEG) = ??

P(w2=0|NEG) = ??

a + 1 b + 1

c + 1 d + 1

POS NEG

w2 = 1

w2 = 0
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Add-One Smoothing

• Question: How do we estimate P(w2=1/0|POS/NEG) ?

P(w2=1|POS) = (a + 1) / (a + c + 2)

P(w2=0|POS) = (c + 1) / (a + c + 2)

P(w2=1|NEG) = (b + 1) / (b + d + 2)

P(w2=0|NEG) = (d + 1) / (b + d + 2)

a + 1 b + 1

c + 1 d + 1

POS NEG

w2 = 1

w2 = 0
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Naive Bayes Classification
example: positive/negative movie reviews

• Given instance D, predict positive (POS) if:

• Otherwise, predict negative (NEG)
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• Naive Bayes Classifiers are simple, effective, robust, and 
very popular

• Assumes that feature values are conditionally 
independent given the target class value

• This assumption does not hold in natural language

• Even so, NB classifiers are very powerful

• Smoothing is necessary in order to avoid zero 
probabilities

Naive Bayes Classification


