Predictive Analysis of Text: Concepts, Features, and Instances

Sandeep@unc.edu

First things first

Readings:

- What did you understand?
- What did you not understand?
- What are the key words that you have understood or not?

Predictive Analysis of Text

 Objective: developing and evaluating computer programs that automatically detect a particular concept in natural language text

Predictive Analysis basic ingredients

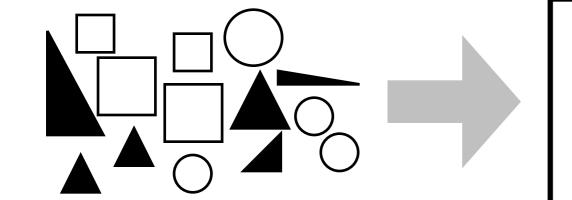
- 1. Training data: a set of positive and negative examples of the concept we want to automatically recognize
- 2. Representation: a set of features that we believe are useful in recognizing the desired concept
- 3. Learning algorithm: a computer program that uses the training data to learn a predictive model of the concept

Predictive Analysis basic ingredients

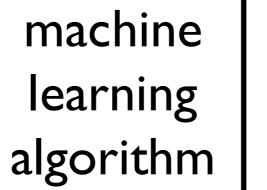
- 4. Model: a function that describes a predictive relationship between feature values and the presence of the concept
- 5. Test data: a set of previously unseen examples used to estimate the model's effectiveness
- 6. Performance metrics: a set of statistics used to measure the predictive effectiveness of the model

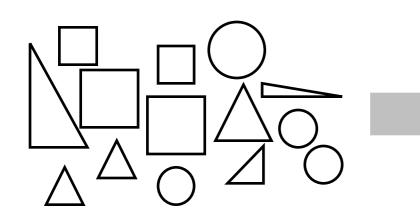
Predictive Analysis training and testing

training



labeled examples

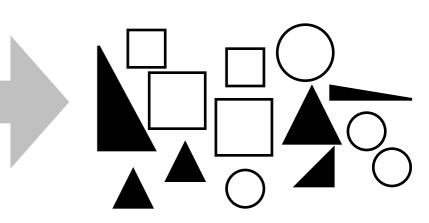




new, unlabeled examples

testing

model



predictions

Predictive Analysis concept, instances, and features

features

concept

color	size	# sides	equal sides	•••	label
red	big	3	no	•••	yes
green	big	3	yes	•••	yes
blue	small	inf	yes	•••	no
blue	small	4	yes	•••	no
•		•	•	•	•
red	big	3	yes	•••	yes

instances

Predictive Analysis training and testing

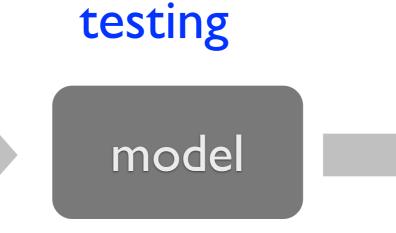
training

color	size	sides	equal sides		label
red	big	3	no		yes
green	big	3	yes		yes
blue	small	inf	yes		no
blue	small	4	yes		no
	:	:		:	:
red	big	3	yes		yes

labeled examples

machine	
learning	
algorithm	

color	size	sides	equal sides		label
red	big	3	no		???
green	big	3	yes		???
blue	small	inf	yes		???
blue	small	4	yes		???
:	:	:	÷	:	???
red	big	3	yes		???
new, unlabeled					



color	size	sides	equal sides		label
red	big	3	no		yes
green	big	3	yes		yes
blue	small	inf	yes		no
blue	small	4	yes		no
:	:	:	i	:	
red	big	3	yes		yes

predictions

examples

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- How should I divide the data into training and test sets?
- What is a good feature representation for a task?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

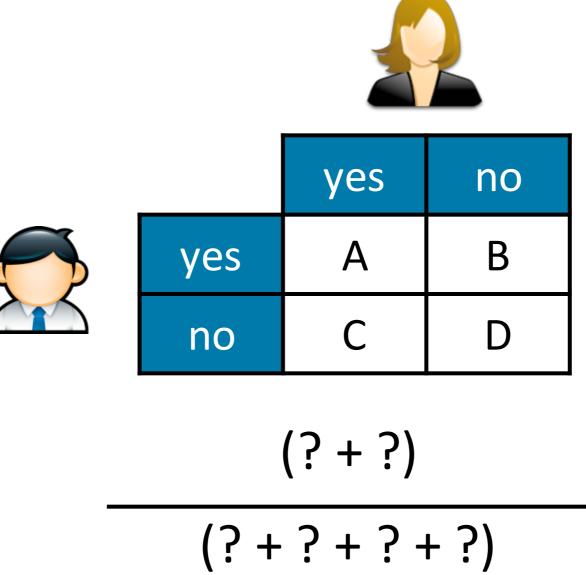
- Learning algorithms can recognize some concepts better than others
- What are some properties of concepts that are easier to recognize?

• Option 1: can a human recognize the concept?

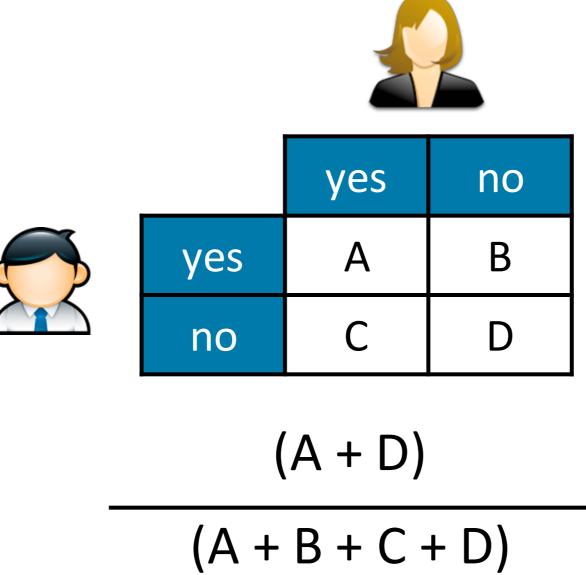
- Option 1: can a human recognize the concept?
- Option 2: can two or more humans recognize the concept independently and do they agree?

- Option 1: can a human recognize the concept?
- Option 2: can two or more humans recognize the concept independently and do they agree?
- Option 2 is better.
- In fact, models are sometimes evaluated as an independent assessor
- How does the model's performance compare to the performance of one assessor with respect to another?
 - One assessor produces the "ground truth" and the other produces the "predictions"

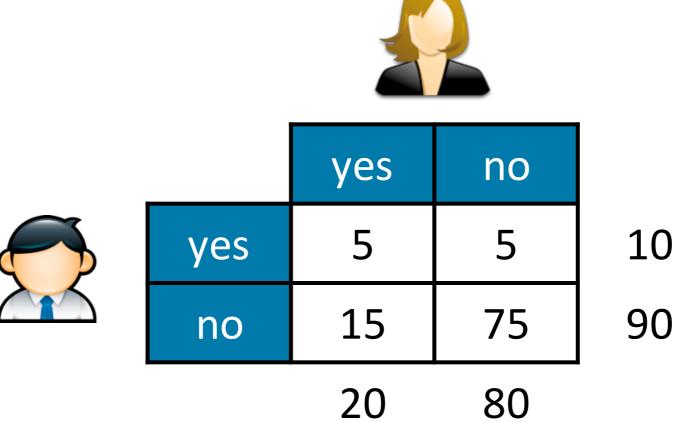
 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur

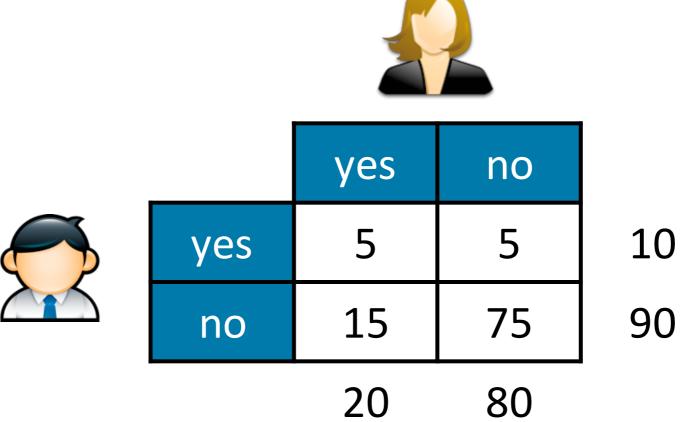


 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



% agreement = ???

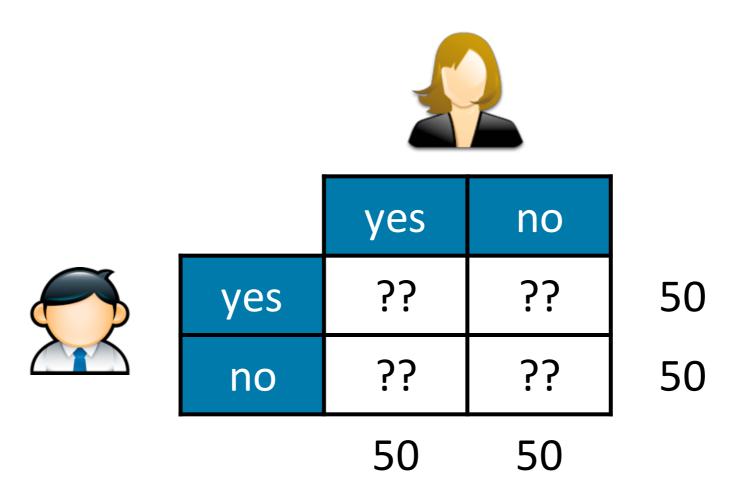
 Percent agreement: percentage of instances for which both assessors agree that the concept occurs or does not occur



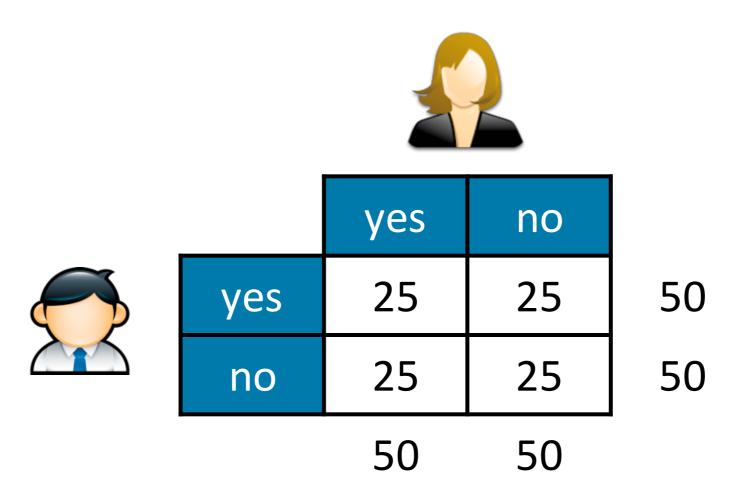
% agreement = (5 + 75) / 100 = 80%

- Problem: percent agreement does not account for agreement due to random chance.
- How can we compute the expected agreement due to random chance?
 - Option 1: assume unbiased assessors
 - Option 2: assume biased assessors

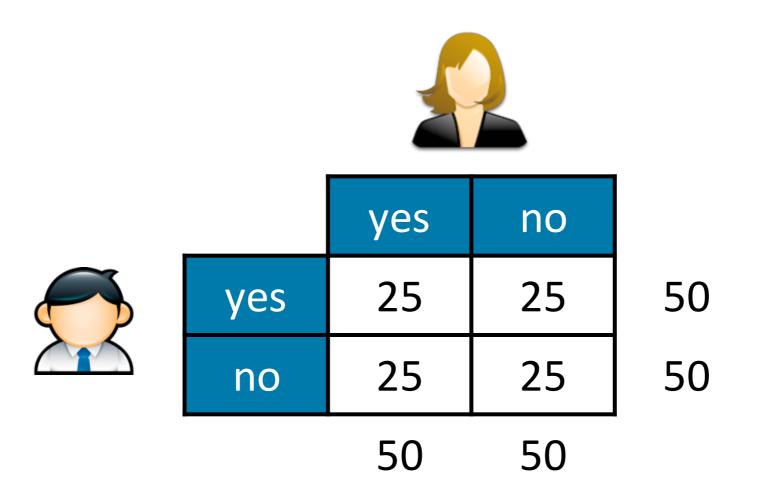
• Option 1: unbiased assessors



• Option 1: unbiased assessors

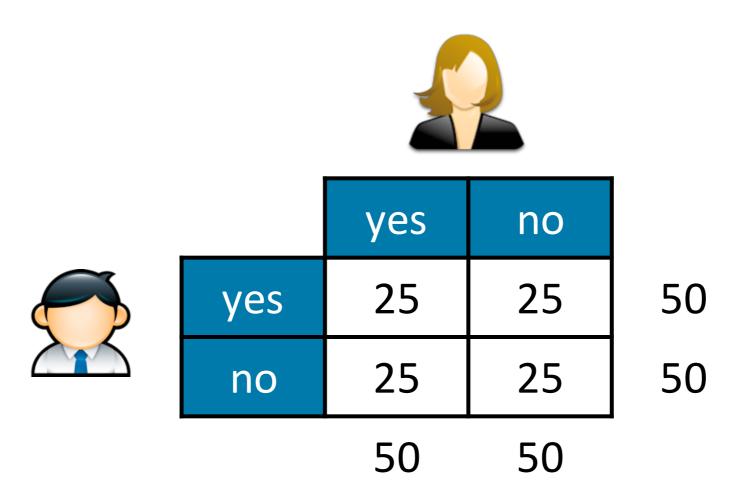


• Option 1: unbiased assessors



random chance % agreement = ???

• Option 1: unbiased assessors



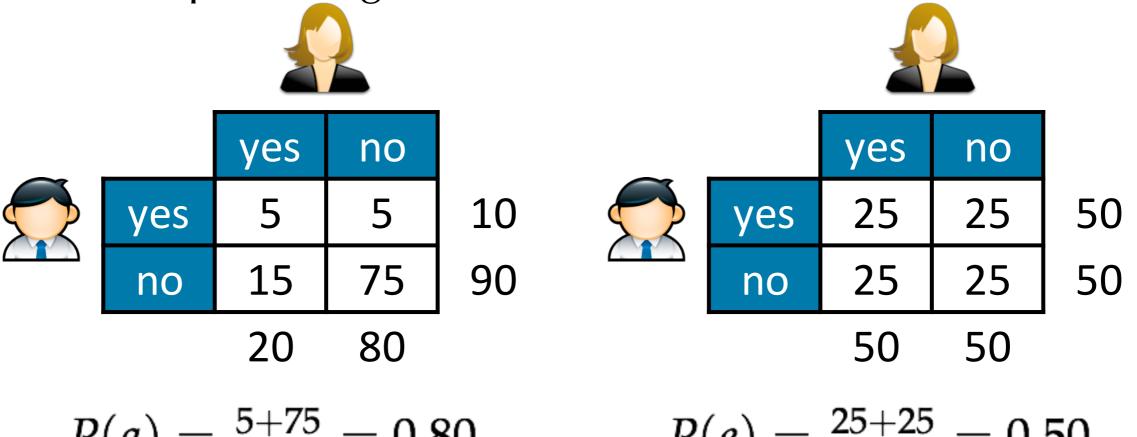
random chance % agreement = (25 + 25)/100 = 50%

 Kappa agreement: percent agreement after correcting for the expected agreement due to random chance

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)}$$

- P(a) = percent of observed agreement
- P(e) = percent of agreement due to random chance

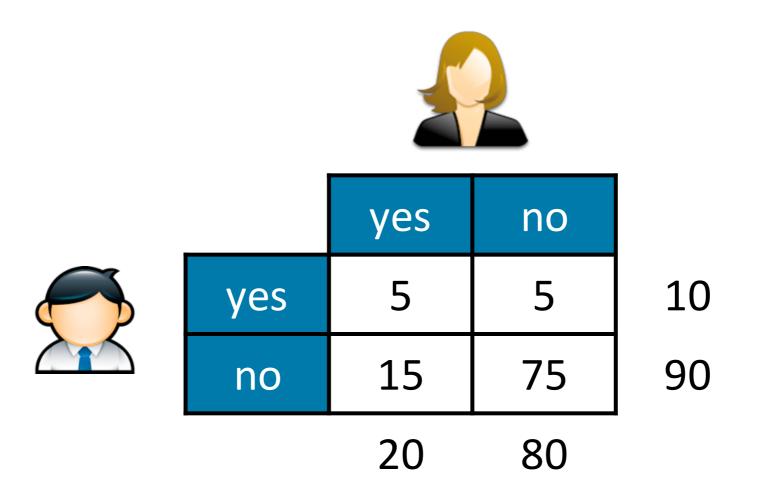
 Kappa agreement: percent agreement after correcting for the expected agreement due to <u>unbiased</u> chance



$$P(a) = \frac{5+75}{100} = 0.80 \qquad P(e) = \frac{25+25}{100} = 0.50$$

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)} = \frac{0.80 - 0.50}{1 - 0.50} = 0.60$$

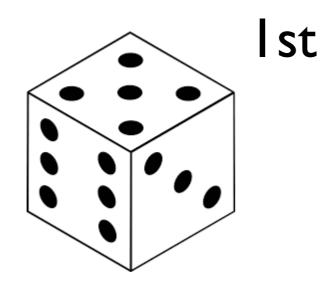
• Option 2: biased assessors

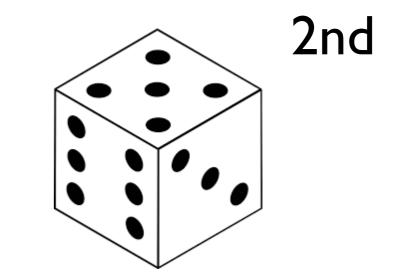


biased chance % agreement = ???

Probability calculation

 When throwing a die twice, what is the probability that the first is even number and the second is a multiple of 3?



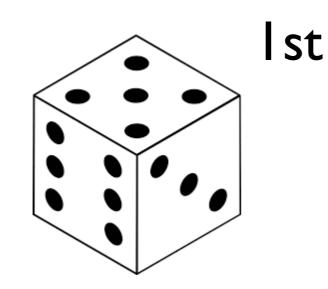


Even numbers: 2, 4, 6

Multiples of 3: 3, 6

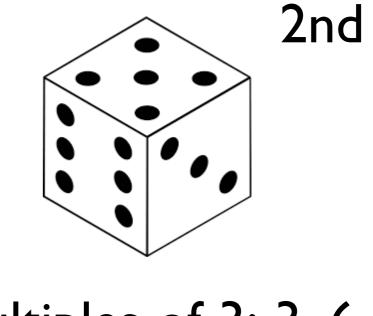
Probability calculation

 When throwing a die twice, what is the probability that the first is even number and the second is a multiple of 3?



Even numbers: 2, 4, 6 $\frac{3}{6} = \frac{1}{2}$ $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

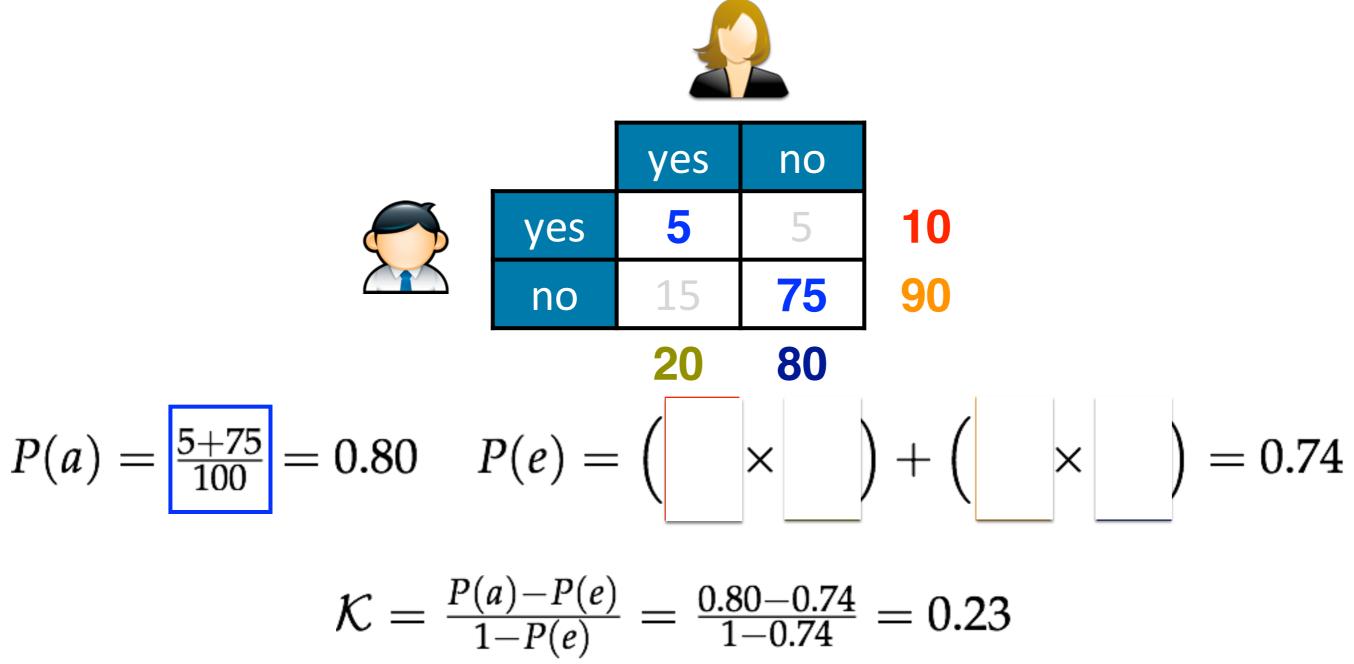
Slide borrowed from Heejun Kim



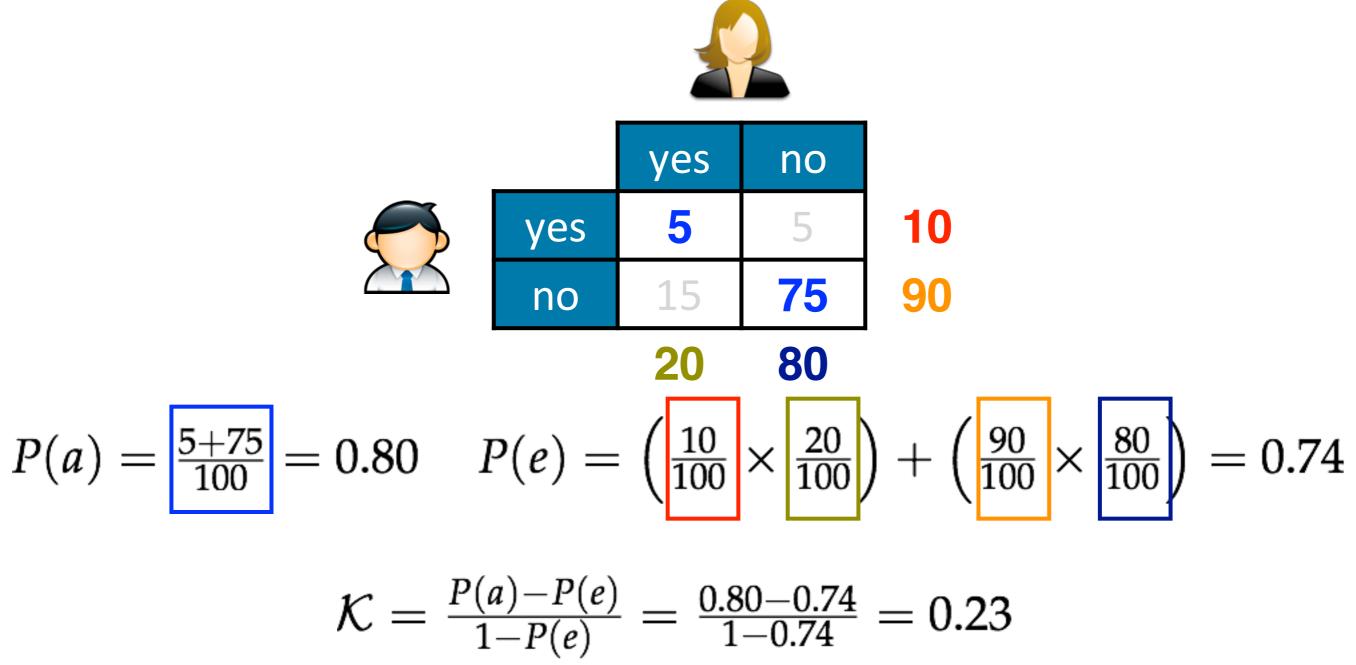
Multiples of 3: 3, 6 $\frac{2}{6} = \frac{1}{3}$

27

 Kappa agreement: percent agreement after correcting for the expected agreement due to <u>biased</u> chance



 Kappa agreement: percent agreement after correcting for the expected agreement due to <u>biased</u> chance



Predictive Analysis data annotation process

- **INPUT**: unlabeled data, annotators, coding manual
- **OUTPUT**: labeled data
 - 1. using the latest coding manual, have <u>all</u> annotators label some previously unseen portion of the data (~10%)
 - 2. measure inter-annotator agreement (Kappa)
 - **3. IF** agreement < X, **THEN**:
 - refine coding manual using disagreements to resolve inconsistencies and clarify definitions
 - return to 1

ELSE

have annotators label the remainder of the data independently and EXIT

Predictive Analysis data annotation process

- What is good (Kappa) agreement?
- It depends on who you ask
- According to Landis and Koch, 1977:
 - ► 0.81 1.00: almost perfect
 - 0.61 0.70: substantial
 - 0.41 0.60: moderate
 - ► 0.21 0.40: fair
 - ► 0.00 0.20: slight
 - < 0.00: no agreement</p>

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)}$$

• Kappa agreement simulation

Case	P(a)	P(e)	Карра
I	0.5	0.1	
2	0.5	0.2	
3	0.5	0.3	
4	0.5	0.4	
5	0.5	0.5	

$$\mathcal{K} = \frac{P(a) - P(e)}{1 - P(e)}$$

• Kappa agreement simulation

Case	P(a)	P(e)	Карра
I	0.5	0.1	0.44
2	0.5	0.2	0.375
3	0.5	0.3	0.29
4	0.5	0.4	0.17
5	0.5	0.5	0

Predictive Analysis data annotation process

- Question: requests information about the course content
- Answer: contributes information in response to a question
- Issue: expresses a problem with the course management
- Issue Resolution: attempts to resolve a previously raised issue
- Positive Ack: positive sentiment about a previous post
- Negative Ack: negative sentiment about a previous post
- Other: serves a different purpose

Predictive Analysis data annotation process

	MTurk Workers	MV and Expert
	$\kappa_{ m f}$	$\kappa_{ m c}$
Question	0.569	0.893
Answer	0.414	0.790
Issue	0.421	0.669
Issue Resolution	0.286	0.635
Positive Ack.	0.423	0.768
Negative Ack.	0.232	0.633
Other	0.337	0.625

Predictive Analysis questions

- Is a particular concept appropriate for predictive analysis?
- What should the unit of analysis be?
- What is a good feature representation for this task?
- How should I divide the data into training and test sets?
- What type of learning algorithm should I use?
- How should I evaluate my model's performance?

- For many text-mining applications, turning the data into instances for training and testing is fairly straightforward
- Easy case: instances are self-contained, independent units of analysis
 - topic categorization: instances = documents
 - opinion mining: instances = product reviews
 - bias detection: instances = political blog posts
 - emotion detection: instances = support group posts

Topic Categorization predicting health-related documents

features

concept

w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	health
0	0	0	•••	0	other
0	0	0	•••	0	other
0	1	0	•••	1	other
		•	•••		
1	0	0	•••	1	health

Opinion Mining predicting positive/negative movie reviews

features

concept

w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	positive
0	0	0	•••	0	negative
0	0	0	•••	0	negative
0	1	0	•••	1	negative
•		•	•••		•
1	0	0	•••	1	positive

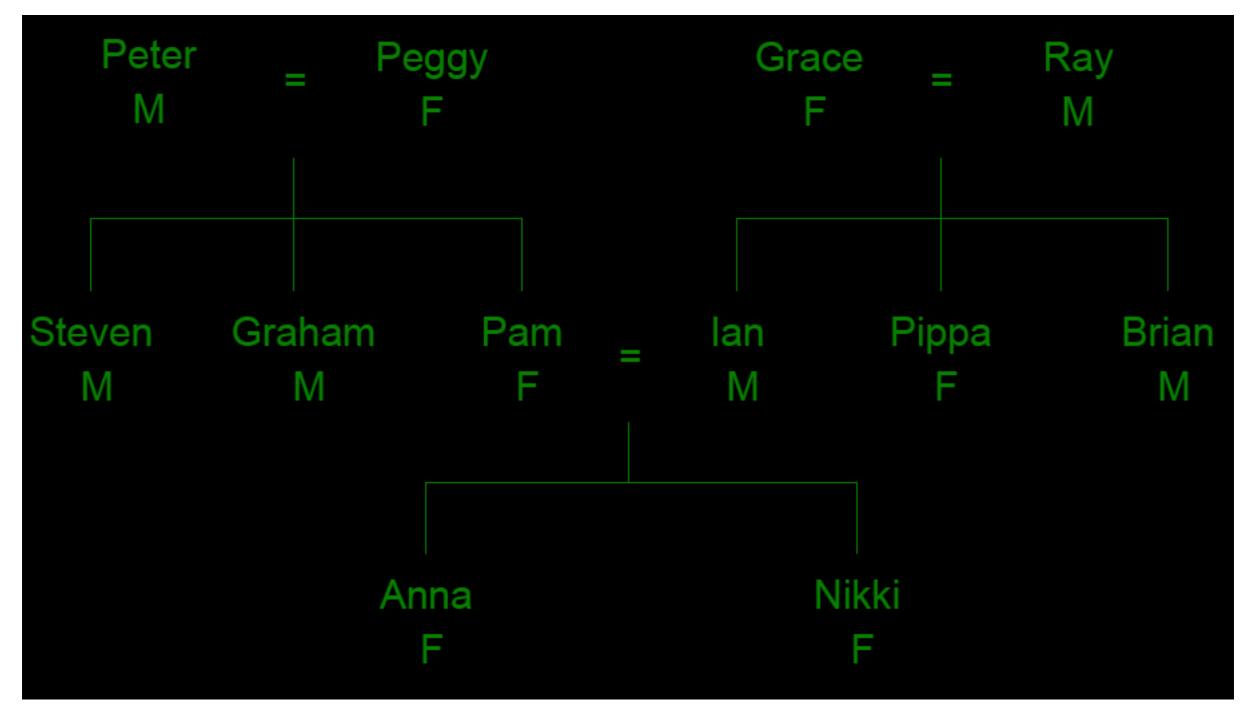
Bias Detection predicting liberal/conservative blog posts

features

concept

w_1	w_2	w_3	•••	w_n	label
1	1	0	•••	0	liberal
0	0	0	•••	0	conservative
0	0	0	•••	0	conservative
0	1	0	•••	1	conservative
•		•	•••		•
1	0	0	•••	1	liberal

- A not-so-easy case: relational data
- The concept to be learned is a <u>relation</u> between pairs of objects



(example borrowed and modified from Witten et al. textbook)

features

concept

name_1	gender_1	mother_1	father_1	name_2	gender_2	mother_2	father_2	brother
steven	male	peggy	peter	graham	male	peggy	peter	yes
lan	male	grace	ray	brian	male	grace	ray	yes
anna	female	pam	ian	nikki	female	pam	ian	no
pippa	female	grace	ray	brian	male	grace	ray	no
steven	male	peggy	peter	brian	male	grace	ray	no
	i							
anna	female	pam	ian	brian	male	grace	ray	no

- A not-so-easy case: relational data
- Each instance should correspond to an object <u>pair</u> (which may or may not share the relation of interest)
- May require features that characterize properties of the pair

features

concept

45

name_1	gender_1	mother_1	father_1	name_2	gender_2	mother_2	father_2	brother
steven	male	peggy	peter	graham	male	peggy	peter	yes
lan	male	grace	ray	brian	male	grace	ray	yes
anna	female	pam	ian	nikki	female	pam	ian	no
pippa	female	grace	ray	brian	male	grace	ray	no
steven	male	peggy	peter	brian	male	grace	ray	no
i	÷	÷	i	÷	÷	i	i	:
anna	female	pam	ian	brian	male	grace	ray	no

(can we think of a better feature representation?)

features

concept

gender_1	gender_2	same parents	brother
male	male	yes	yes
male	male	yes	yes
female	female	no	no
female	male	yes	no
male	male	no	no
:		:	
female	male	no	no

- A not-so-easy case: relational data
- There is still an issue that we're not capturing! Any ideas?
- Hint: In this case, should the predicted labels really be independent?

Brother(A,B) = yes Brother(B,C) = yes Brother(A,C) = no

- In this case, what we would really want is:
 - a method that does joint prediction on the test set
 - a method whose joint predictions satisfy a set of known properties about the data as a whole (e.g., transitivity)

- There are learning algorithms that incorporate relational constraints between predictions
- However, they are beyond the scope of this class
- We'll be covering algorithms that make independent predictions on instances
- That said, many algorithms output prediction confidence values
- Heuristics can be used to disfavor inconsistencies

- Examples of relational data in text-mining:
 - information extraction: predicting that a word-sequence belongs to a particular class (e.g., person, location)
 - topic segmentation: segmenting discourse into topically coherent chunks

- Examples of relational data in text-mining:
 - information extraction: predicting that a word-sequence belongs to a particular class (e.g., person, location)
 - e.g., President Barack Obama gives farewell speech in Chicago as it happened
 - topic segmentation: segmenting discourse into topically coherent chunks